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( 2 - 6 ) from the corresponding bromoaldehydes in the yields 
(after isolation by column chromatography) indicated. 

As compared with the current processes for the preparation 
of the large ring lactones, this route provides a convenient and 
versatile method for the introduction of a-methyl-ff-hydroxy 
lactones as they appear in many natural ly occurring macrol-
ides1 7 s tart ing with simple 1 ,co-diols.18 
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Gas Phase Hydrolysis of Phosphorus Esters 

Sir: 

There has been considerable interest for some time in the 
hydrolysis of phosphorus esters.1 This is due in part to the 
importance of phosphate esters in biological systems as well 
as similarities and differences compared with carboxylates. 
The remarkable differences in hydrolysis rates of cyclic 
phosphorus esters have provided important insights into the 
effects of strain and energetics on trigonal-bipyramidal in­
termediates in these reactions.'"5 In this communication we 
report gas phase hydrolysis studies which show that the effects 
observed in solution persist in the gas phase and thus are 
mechanistically intrinsic and not an artifact of solvation. 

In solution, alkaline hydrolysis of five-membered cyclic 
phosphate esters without ring opening is considerably faster 
than cleavage in acyclic analogues.3 However, exocyclic hy­
drolysis of five-membered cyclic phosphonate and phosphinate 
esters shows virtually no acceleration relative to acyclic an­
alogues.3,4 While rapid hydrolysis with ring opening can be 
readily explained by the release of ring strain in the transition 
state, exocyclic cleavage requires that the pentacoordinate 
intermediate must undergo positional isomerization (pseu-
dorotation) (eq 1) to place the leaving group in the apical po­

sition necessary for cleavage.5 Such intervening intermediates 
have been shown to be energetically favorable for the cyclic 
phosphate esters but not for the cyclic phosphonate and 
phosphinate esters. 

Using the trapped ion, pulsed ICR technique,6 we have 
measured the rates of reaction of trimethyl phosphate (1), 
methyl ethylenephosphate (2), methyl propylphostonate (3), 
ethyl tetramethylenephosphinate (4), and ethyl propylphos-
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tonate (5) with OH - as the nucleophile.7'8 The rates of CH3O -

appearance are comparable for 1 (k = 3.2 ± 0.3 X 1O-10 cm3 

molecule-1 s-1) and 2 (k = 1.8 ±0.1 X 1O-10 cm3 molecule-1 

s~')< while for 3, 4, and 5, alkoxide appearance was too slow 
for us to measure9 (k < 10 -12 cm3 molecule-1 s -1). 

Under the conditions of our experiments, only products of 
exocyclic cleavage of the esters are observable. Ring opening 
would lead to a vibrationally excited ion-molecule adduct 
which would probably not live long enough to be collisionally 
stabilized at these low pressures (10-6Torr). It is significant 
that both the cyclic and acyclic rates are low (by about an order 
of magnitude) compared with collision rates. This suggests the 
existence of a barrier somewhere along the potential sur­
face.10 

Alkaline hydrolysis of cyclic phosphinate esters is slow in 
solution, and, similarly, the rate of reaction of OH - with 4 is 
too slow for us to measure in the gas phase. Here the penta-
coordinate intermediate required for exocyclic cleavage is 
energetically unfavorable because it places an alkyl group in 
an apical position. Reaction of 3 in solution leads to fast ring 
opening but slow exocyclic cleavage. In agreement with solu­
tion work, the rate of reaction of 3 to give exocyclic product 
is also slow in the gas phase. In this case, although the initial 
pentacoordinate intermediate should be formed easily, pseu-
dorotation to the intermediate in which CH3O is in an apical 
position is energetically unfavorable because it simultaneously 
places an alkyl group in an apical position.1 K12 Alkaline hy­
drolysis of 2 in solution gives very fast ring opening and mod­
erately fast exocyclic cleavage. In agreement with these results, 
2 is the only one of the cyclic esters investigated whose exo­
cyclic cleavage is fast enough for us to measure. Here, both the 
initial pentacoordinate intermediate and that formed after 
pseudorotation have oxygen atoms in apical positions, thus 
making the necessary intermediates (and transition states) 
readily accessible. 

Interestingly, alkaline solution hydrolysis of 1 is much slower 
than exocyclic cleavage of 2, whereas in the gas phase the rates 
are comparable. In both gas phase and solution, relief of strain 
in 2 should accelerate reaction. In solution ring opening is much 
faster than pseudorotation, indicating a measurable barrier 
to pseudorotation. In the gas phase, the intermediates are en­
ergetically activated,10 and return to reactants (loss of OH -) 
with its large A factor is faster than pseudorotation. Appar­
ently the pseudorotation barrier superimposed upon the strain 
relief acceleration results in a rate comparable with that in the 
acyclic system. 

In conclusion, we believe that the general picture proposed 
to explain solution hydrolysis rates in phosphorus esters5 is 
applicable to the gas phase as well. The remarkable agreement 
suggests that differential behavior of the potential surface after 
nucleophilic addition has occurred is not dramatically affected 
by solvation. 
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Sulfur 2p Photoelectron Spectrum of 
Blue Copper Proteins. Comment on Papers by 
Solomon et al. and Peeling et al. 

Sir: 

The sulfur 2p region in x-ray photoelectron spectra of 
plastocyanin and some other blue copper proteins has a strong 
component at 5-eV higher binding energy (HBE) than the 
main line.1"3 The apoplastocyanin does not show a similar 
HBE line and Solomon et al. therefore suggested that one of 
the sulfurs (the cysteine sulfur) was bonded to a copper(II) 
ion.1 Peeling et al. pointed out that a 5-eV shift is too large to 
be caused by coordination to a transition metal ion2 and sug­
gested that the HBE line was due to oxidized sulfur present in 
the preparations, a conclusion also reached by Rupp and 
Weser.4 Peeling et al. also argued that the integrated sulfur 
2p intensity had a correct magnitude compared to the nitrogen 
1 s line only if the S 2p HBE line was omitted in the integration. 
In a reply, Solomon et al. rejected, however, the possibility of 
sulfates or other impurities.3 

Since it is quite unreasonable to expect a 5-eV chemical 
shift, I would like to suggest as another possible source for the 
HBE line a charge-transfer satellite which appears because 
of the bonding to a transition metal ion. The conclusions made 
by Solomon et al.13 would then be correct although based on 
a less probable interpretation of the spectrum. 

Let us write the valence hole orbital as 

<p = sin T) UCM + cos ij us (1) 

where «cu and «s are Cu 3d and S 3p orbitals and sin 77 and 
cos 17 coefficients. We disregard for simplicity the overlap be­
tween «cu and us- n - 90° corresponds to the completely ionic 
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